如何评价2017江苏高考
试卷结构稳定,知识点广,重点突出,层次清晰,逐步深化,学生解题容易,心理状态平和,能正常发挥水平。试题的难度和区分度适当,不仅有利于不同层次的高校选拔人才,而且可以引导中学实施素质教育的目标。今年的数学试题仍然坚持“原创为主,改编为辅”的风格,知识点不超出大纲,原创题可以围绕考生熟悉的情况设置,改编题来自教材。试题呈现常规但不落俗套,图片清晰。没有解题陷阱,没有阅读障碍。全卷计算控制严格,突出了考生的理性思维,强调了对数学本质的理解,体现了高考的命题导向。同时适当减少有参考的试题数量,旨在让大部分考生有时间做每道试题,也让优秀考生有时间攻克难题。黄智华认为,今年的高考数学题重在基础,突出骨干。试题与教材联系紧密,学生做起来有亲近感,特点是“容易上手”,有利于考生发挥真实水平。具体题型分析●填空题1-10,解题题15,16和附加题21都是易题。考查基础知识和核心知识,考查数学的基本概念、基本定理和常用公式。●填空题11—14比较全面,思维含量较高,注重数学思维方法的考查,但解题思路和方法还是通用的,在日常教学中经常涉及,会有很好的区分度。●解题第17题为解析几何题,改变了以往计算量大的情况,让学生动手做,得到更好的分数。18题与平面几何知识有关。关键是转化问题,突出数学思想方法的考查。如果能增强一些实际应用,就能更好的体现应用价值。●第22道附加题也是师生的期待题,所以空间向量运算自然能及格。●附加题19、20、23题都是层层问,每个小项的难度都是递进的,螺旋式上升。起点合适的话,所有学生都能拿分,不同层次的考生都能有所收获。这样既能增强学生解决问题的信心,又能有效区分学生的思维水平和数学素养,符合新课改的理念。试题在强调“一般性”和“概括性”的前提下,渗透了中学数学知识所蕴含的基本数学思想方法。如11、12、13、14、16、17、20题中的数形结合;8、9、10、11、12、13、14、16、17、20题的函数方程思路;问题11、14、16、20的分类讨论思路;问题5,6,7,13,15,19的变换。试卷基础考查既注重全面性,又力求突出重点、骨干、核心,贴近教学实际。试卷对考试说明(数学)中的八个C级考点进行了全面、反复的考查,基本涵盖了B级考点,适当考虑了A级考点;从考查的内容来看,每一种题型(如函数、数列、解析几何、立体几何、三角与向量、概率统计)都在突出其核心内容的基础上进行了全面的考查。黄智华认为,2017江苏高考,强调了数学的基础能力、综合能力和创新能力,强调了知识的交叉、渗透和综合,注重数学思维方法在解决数学问题中的指导,更好地考查了学生的知识结构和数学素养。试题自始至终考察空间想象、抽象概括、推理论证、运算求解、数据处理五种基本数学能力。比如,第七题将函数的定义域、一元二次不等式的求解、几何概率有机地融合在一起;●12题结合平面向量基本定理、三角函数、解三角形;●问题13链接直线与圆,矢量积与线性规划等。●14题是对函数性质的综合考查。●19、20、23题都有较高的思维要求,要求学生思路清晰、敏捷、深刻,具有较高的探索和分析问题的能力,能够考察学生综合、灵活运用所学数学知识和思维方法,创造性解决问题的能力。特别是在19题中,新定义的“P(k)数列”与等差数列有序结合,有效的测试了学生的学习潜力。试题的设置可以正确引导中学教学改革,使师生聚焦中学数学核心内容,将众多知识点连成网络,形成体系,提高数学学习兴趣,培养创新意识和探究精神,提高解题能力,提高数学素养。黄智华说,试题的编写注重思维方法的多样性和入口的广泛性,但不同思维方法的简单性和复杂性差异较大,不同解法的效率不同,不同解法对应的思维长度和计算量差异较大。既保证了各个能力层次的考生都有所收获,也让综合能力优秀的考生脱颖而出。