(2014?如图,在平行四边形ABCD中,AB=4,BC=2,∠ A = 60。(1)验证:BD⊥BC;(2)扩展CB

解:(1)交点d为DH⊥AB,垂足为h,

在Rt△AHD,AH=AD?cosA=BC?cosA=1,

∫AHAD = 12,BCCD=12

∴ ahad = bccd,即AHBC=ADCD..

∠∠C =∠A = 60,

∴△AHD∽△CBD,

∴∠CBD=∠AHD=90,

∴bd⊥bc;

(2)①∫公元∨公元前,

∴∠ADB=∠DBC=90,

∠∠BDH+∠HDA = 90,∠A+∠HDA=90,

∴∠BDH=∠A=60,

∫∠EDF = 60,

∴∠BDH=∠EDF,即∠EDH+∠BDE=∠FDB+∠BDE,

∴∠EDH=∠FDB,

∠∠EHD =∠CBD = 90,

∴△EHD∽△FBD,

∴DHBD=EHBF,

∴323=x?12?y,

∴y=4-2x(1

②在三种情况下连接EF:

1当F点在BC线上时(F点与B点和C点不重合),

∵△EHD∽△FBD,

∴ dhbd = dedf。即DHDE=BDDF..

∫∠BDH =∠EDF,

∴△BDH∽△FDE,

∴∠DEF=90,

在Rt△EDH中,de = eh2+dh2 = x2?2x+4,

∴EF=DE?tan60