(2014?如图,在平行四边形ABCD中,AB=4,BC=2,∠ A = 60。(1)验证:BD⊥BC;(2)扩展CB
解:(1)交点d为DH⊥AB,垂足为h,
在Rt△AHD,AH=AD?cosA=BC?cosA=1,
∫AHAD = 12,BCCD=12
∴ ahad = bccd,即AHBC=ADCD..
∠∠C =∠A = 60,
∴△AHD∽△CBD,
∴∠CBD=∠AHD=90,
∴bd⊥bc;
(2)①∫公元∨公元前,
∴∠ADB=∠DBC=90,
∠∠BDH+∠HDA = 90,∠A+∠HDA=90,
∴∠BDH=∠A=60,
∫∠EDF = 60,
∴∠BDH=∠EDF,即∠EDH+∠BDE=∠FDB+∠BDE,
∴∠EDH=∠FDB,
∠∠EHD =∠CBD = 90,
∴△EHD∽△FBD,
∴DHBD=EHBF,
∴323=x?12?y,
∴y=4-2x(1 ②在三种情况下连接EF: 1当F点在BC线上时(F点与B点和C点不重合), ∵△EHD∽△FBD, ∴ dhbd = dedf。即DHDE=BDDF.. ∫∠BDH =∠EDF, ∴△BDH∽△FDE, ∴∠DEF=90, 在Rt△EDH中,de = eh2+dh2 = x2?2x+4, ∴EF=DE?tan60